
A Study on Fault Prediction and Reliability Assessment
in the SEL Environment

Victor R. 13asili
Debabrata Patnaik

Department of Computer Science
Universi ty of Maryland
at College Park 20742

(301) 454-2002

Abstract

This paper presents an empirical s tudy on estimation and predic-
tion of faults, prediction of fault detection and correction effort,
and reliability assessment in the Software Engineering Laboratory
environment (SEL).
Faul t estimation using empirical relationships and fault prediction
using curve fitting method are investigated. Relationships between
debugging efforts (fault detection and correction effort) in different
test phases are provided, in order to make an early estimate of
future debugging effort.
This s tudy concludes with the fault analysis, application of a relia-
bility model and analysis of a normalized metric for reliability
assessment and reliability monitoring during development of
software.
Keywords: Faul t Estimation, Faul t Prediction, Debugging, Relia-
bility Assessment and Fault Analysis

This study is funded by NASA grant. NSG-5123.

4-3

1. Introduction
The software 'development process

Software developers spend a considerable
is an expensive and complicated process.

amount of time in monitoring the cost and
quality of the software with two basic goals, to keep the cost down and quality high.
Managers often report difficulty in delivering the software for a certain deadline because
of uncertainity about its performance. It has been observed that it is much easier and
cheaper to correct a flaw at an early stage than in a later stage [Fischer and Walker
19791. Therefore, many researchers are stressing requirement level verification to elim-
inate the bugs that may result from ambiguous or incorrect requirement specifications.
There are many tools and techniques available to aid programmers and managers during
the development phases. Various testing techniques are employed to remove defects
from the software being developed. It has been realized that these tools and techniques
are not enough to ensure the quality and reliability of the software. Various software
metrics developed in recent years help monitor the software development throughout its
life cycle.

One of the main problems that managers encounter during the testing phase is the
need to predict the remaining faults in the software so that they can plan to staff and
test accordingly. There is no simple solution to this problem. In recent years several
reliability iiiwdeis have emerged and more modeis are yet io appear jTransaciium 011

Reliability, August 19791. It is very difficult to apply any model in different environ-
ments. In some cases, practitioners find i t difficult and very expensive to collect data in
order to use a model. What they need is a simple but robust model, which can be
applied easily and inexpensively to predict and assess the reliability of a software project
[Iannino et. a1 19841.

This paper addresses several aspects regarding fault prediction and reliability
assessment. The objectives of this study were to

evaluate and compare fault estimation and fault prediction models

analyze the fault detection and fault correction effort data at different
phases of the software life cycle

investigate the possibility of measuring and monitoring software reliability

The data used in this study were collected from a set of software projects
developed at NASA/Goddard by Computer Sciences Corporation. These data were col-
lected by the Software Engineering Laboratory (SEL) using forms and techniques
described by [Basili, Zelkowitz, McGarry et a1 19771. These projects were written in
FORTRAN and were developed for IBM mainframes running OS/VS and MVS/TSO.
The sizes of these projects range from 15 to 168 thousand lines of code. Most of these
projects are scientific and predominantly ground support software for satellites. These
software projects were developed in a single environment using a common programming
pool. In the SEL environment each software life cycle consists of six different phases:

1
8

4-4

Requirement Specification
Design
Coding and Unit Testing
Integration and System Testing
Acceptance Testing
0 perat ion

Fault data collection starts from the middle of the Unit test phase except for a few
exceptions where the data collection starts towards the end of the Unit test phase. The
data of interest in this study are described below:

a. The total number of faults (F) is the total number of faults observed
during all three test phases.

b. The size of the software is the total number of lines in the software.

c. The faults per KLOC is the number of faults observed per one thousand
lines of code.

d. The number of components changed per fault is the number of software
components needed to be changed in order to correct a fault.

e. The fault detection effort is the effort (in hours) needed to detect the
cause of a fault.

f. The fault correction effort is the effort (in hours) needed to implement
the changes required to correct a fault.

g. The sources of faults describe the source of each fault.

One of the objectives of this study is to analyze and compare the fault data across
projects. Since duration of the test phases for each project are not the same, each phase
was divided into some fractions to facilitate comparisons. The next three sections
describe the results of this empirical study.

2. Fault Estimation and Prediction
Fault estimation and prediction at an early phase is important for software

developers. In the first case, empirical formulas based on relationships between the total
number of faults and other variables are used. In the second case, a curve is fitted to a
part of fault data already collected during early testing phases. These two methods are
investigated and the results are discussed in 2.1 and 2.2.

- 2 -

4-5

2.1 Fault Estimation
There are many empirical formulas which can be used for this purpose. The objec-

tive of this section is to find such relationships in the SEL environment. The data used
in this study are given in Table 2.1.

Data Source
Lipow
Akiyama
SEL

1 PROJECT

Language Formula
Jovi a1
Assembly
FORTRAN

Fault = 4 + O.0014*Sizc4/*
Fault = 4.2 + 0.0015*Size4/*
Fault = 53.38 + 0.000056*Si~e~~*

~

1 .DEA
2.DEB
3.sMM
4 .ERBS
5.AADs
6.AADSIM
7 .AEM
8.AODS
9.DARES
10.DEDET
11.GLI
1 2.ISEE C
13 .MAGSAT

FAULTS
219
270
29 1
589
83
61

181
94

136
138
42

118
306

SIZE
66848
68370
98370

167775
15548
27443
50601
30823
25662
17121
26923
75145
89181

SIZE ‘la

27 13009
2795680
4540987
9253435
388060
827768

187 1596
966421
756927
441271
806921

3171028
3984402

Table 2.1
Fault estimation based on lines of code is useful, since an estimate of the total lines

of code can be available at the beginning of the system test (integration test) phase.
Based on Halstead’s Software Science the total fault content of a software module is
considered to be proportional to S ~ Z C ~ / ~ . In the following table, the estimating formula
for the SEL environment is compared with the same for Akiyama and Lipow [Gaf-
ney841. Figure 1 displays the linear fit of the the same formula listed in Table 2.2 for
the SEL within 95% confidence interval.

Table 2.2
Based on the first two formulas, Gaffney states that the fault content in a software

module is independent of language level. This statement would be more likely to be true
if the language level would be the only factor that is different between projects analyzed
by Lipow and Akiyama. Validity of these two equations has also been questioned by
[Lipow 19861. Independence of language level is not easy to prove in all environments
and for all languages.

- 3 -

4-6

STUOY OF FAULTS VS SaES..(4/3)

Figure 1.

STUDY OF FAULTS VS SIZES

Figure 2.

Assuming that the total fault content is proportional to the size of the software, a

Fault = 8.84 + 0.0032*Size
linear relationship is obtained for the SEL data, which is

- 4 -

4 - 7

and Figure 2 shows the linear fit within 95% confidence interval.
The number of faults per KLOC given by Gaffney is six times higher than that of

SEL data (Table 2.3). On the average there are 3.3 faults observed for one thousand
lines in the SEL environment. This figure is close to the figure for IBM projects [Wals-
ton and Felix 19771.

Source
Akiyama h s e m bly
Lipow Jovial
Walston-Felix Mixed
SEL 3.3 FORTRAN

Table 2.3
In an effort to establish relationships within a project between faults and other

variables such as lines of code, number of components changed throughout the develop-
ment phases, the following observations were made. The number of lines of code do not
have any relationship with number of faults observed across the development phase.
However the relationship between the number of faults and the number of components
changed when compared across projects and aiso with other projects may reveai intri-
cacy of the faults observed. For example, one could compare the number of components
changed per fault at a particular quarter in a phase with the average value for several
projects to determine the status of an on-going project [Doerfinger and Basili 19831. The
first four projects listed in Table 2.1 were chosen for detailed analysis. Though these
software projects vary in size, their applications are the same. These software systems
are Attitude Ground Support Systems that would process telemetry data and provide
definitive attitude determination and real time control support for satellite missions.
The data for these projects are given in the Appendix. Table 2.4 table lists the number
of components changed per fault and the fitted average for the four projects at each
quarter starting with the System test phase. A plot of these values is given in Figure 3.
This table and the plot clearly reveal that the project l(DEA) required more than the
average number of components to be changed per fault after the end of the second quar-
ter in the System test phase. This information should be helpful to the Software
Manager after the middle of System test phase for a project like DEA.

- 5 -

4 -8

Phase

System

Accept

Table 2.4
The analysis of the results are as follows. Fault estimation based on size is the most

simple and the easiest to use empirical formula. It has been shown that the fault estima-
tions based on size of the software is as good as those based on other metrics such as
size of vocabulary [Halstead 19771. However the formulas can not be generalized for all
environments. Since the relationships between number of components changed and
number of faults are reasonably consistent across three out of four projects, the metric
(number of component changed per fault) could be used as a dynamic variable to moni-
tor the development of a software project.

Quarter Project Project Project Project Average

1 1.68 1.73 1.50 1.36 1.51
2 1.47 1.41 1.34 1.53 1.54
3 1.90 1.48 1.33 1 .50 1.57
4 1.90 1.44 1.68 1.56 1.60
1 1.89 1.51 1.64 1.59 1.63
2 1.97 1.53 1.58 1.62 1.65
3 1.97 1.57 1.63 1.60 1.68
4 1.92 1.56 1.60 1.60 1.71

1 (DEX) 2 (DEB) 3 (SMM) 4 (ERBS) (fitted) -

NUMBW OF CoMpONwTS PER FAUT
A

?
O W n

Figure 3.

- 6 -

4-9

2.2 Fault Prediction
The main objective of this section is to investigate the approach of curve fitting to

predict faults for the four projects. In this method a curve is fitted to previous data
using.non linear regression and then the fitted curve is extrapolated into the future. An
advantage of this approach is it is not dependent on any specific test phase data so one
could fit curves at any section of the fault data. Since cumulative fault distributions
seem to be asymptotic, a N " P model was chosen.

The model was fitted to the fault data starting from System test phase and up to
half of the acceptance test phase. A total of 15 points were used from the data given in
the Appendix and the rest of the acceptance test faults were extrapolated. Figure 4
through Figure 7 display the results for the projects 1 through 4 respectively. The
observed faults are also plotted along with the predicted faults for comparison. The
fitted models are listed in Table 2.5.

P

L O

Figure 4.

- 7 -

4-10

1 Proiect I Prediction Model Eauation 1

2.DEB
3.sMM

I 1.DEA I 282.06 (1 - exD-"*mOL.m I I
755.51 (1 - exp"oo2saL.v)

1150.57 (1 - ex~-'~ooo6s*~ I

Project

1.DEA
2.DEB
3.SM.M
4.ERBS

I 4.EFZBS I 656.46 (1 - exD-'.-L.v I

Data Used Observed Predicted % of Error
Fault Fault in Prediction

System & Part of Acceptance 108 124 14.8
System & Part of Acceptance 205 235 14.6
System & Part of Acceptance 122 138 13.1
System & Part of Acceptance 296 290 2.0

Table 2.5

Table 2.6
Table 2.6 lists the total number of faults observed (starting with the system test

phase), the predicted faults and the percentage of error in prediction for each project.

- 8 -

4-11

For the first two projects, the model overestimates by approximately 15 percent, for the
third project by 13 percent and for the last project the predicted and observed faults
are close. This method is an alternative to using empirical formulas. There are obvious
reasons why it may go wrong in some cases. First, it does not consider the intensity of
test cases; second, calendar time, in reality, is not a true representation of test effort.
Though several researchers such as [Ellingson 19671, [Coutinho 19731, and [Nathan 19791
have used a similar approach for fault prediction, a more comprehensive model is sought
[Shooman 19831. However, this simple approach provides a scenario of the possible out-
come in the future testing period. In this section only one class of curve was applied,
but it would be interesting to compare the predicting capabilities of different classes of
growth curves.

3. Effort Estimation
Estimation of effort required to detect and correct faults is as important as estima-

tion of faults. In order to predict fault detection and correction effort, we need to know
the predicted faults and also detection and correction effort per fault in each phase. The
main objective of this section is to investigate the possibility of predicting detection and
curreciiwn e h r i per fauit in a iater phase based on the data from the eariier phases.

Shooman and Bolsky reported, by analyzing a program with 52 faults, that the
difficulty of debugging is independent of testing phases [Shooman & Bolsky 19751. Later
Tratchenburg challenged the result by showing that for four medium sized projects, the

c

:’”
DAYS

- 8 -
4-12

0 4 . , , , , , , , , . . I , . , ,

Project
DEA
DEB

first half of testing requires 112 less effort for fault detection and 1/3 more effort for
fault correction than that for the second half [Tratchenburg 19831. Our results differ
from both Shooman's and Tratchenburg's results. We find that there is a pattern (see
following tables) of fault fixing effort (detection effort+correction effort) during the
phases irrespective of fault detection or fault correction effort. The 1st half represents
the first half of the testing phases, that is unit test and first half of system test phase
and 2nd half represents the second half of system test phase and acceptance test phase.
ks stated before the units of efforts are in hours.

1st half 2nd half Ratio
5.16 7.07 0.73
5.13 5.49 0.93

Average Effort to Detect B Correct

I SMM I 41:g.li 5.30 1 W.3: 1
Table 3.1

ERBS 10.03
Wt. Av 0.74

'Weighted by the number of faults

- 10-
4-13

Average Effort per Fault

DEA
DEB
SMM
ERBS

Wt .Avg

IPROJECT I UMT I SYSTEM I ACCEPTANCE I
4.9 6.9 7.1
2.7 5.1 6.2
4.5 6.8 5.1
4.8 9.1 10.1
4.7 7.3 7.5

Table 3.2
In contrast to the second half, approximately 1/4 less effort is required for both

fault detection and fault correction in the first half. Also, the average effort required to
fix a fault in the system test phase is higher than the effort required in the unit test
phase. The same relationship holds between the effort required in the acceptance test
phase and the system test phase. Although this proportionality varies across projects,
we can conclude that the difficulty in debugging is certainly greater in a later phase
than in earlier phases in the SEL environment. As stated by Tratchenburg, analysis of
this kind combined with fault estimation can help a’developer to predict the effort
required for debugging in the rest of the testing period. But the results do not appear to
be generalizable across environments.

4. Reliability Assessment
To measure the reliability of software, there have been many reliability models pro-

posed [Goel], [Musa], [Jelsinki-Moranda]. These models are mathematical models used to
assess the reliability of software from specified parameters which are measured from
observations or experiments on software. Another type of reliability study deals with
quantitative evaluation of the characteristics of the software which are sensed as associ-
ated with high reliability or the lack of it. Complexity of the software has been con-
sidered to be such a characteristic [Thayer et.al.781 which leads to low reliability.
Difficulty of debugging is considered to be one of the consequences of complexity. In
this section, we will address the following questions:

1. Which types of fault are difficult to debug ?
2. What do we learn from applying a reliability model ?
3. How can we monitor the reliability of software during its development ?

The first question is discussed in section 4.1. The second and the third questions are
discussed in sections 4.2 and 4.3 respectively.

4.1 Fault Analysis
Fault Analysis helps in identifying the software development methodology and test

strategies to prevent and detect faults. Therefore efficient fault categorization has con-
tinued to be of great interest to both researchers and software developers. One of the

- 11-
4-14

goals in this study is to identify the fault sources that are expensive in terms of detec-
tion and correction efforts.

SRCERR

Fault data for the same four projects were analyzed. For each project average effort
to fix a fault was calculated for each fault source (SRCERR2) in each test phase (Unit,
System, Acceptance and Total).

UNIT SYST ACCE TOTAL

Table 4.1 lists the average effort3 required to detect and correct a fault in each test
phase and for each fault source. The average effort is weighted by the corresponding
number of faults in each category and in each project.

REQUIRE
FUNSPEC
DESIGN
CODE
PREV. C

Average Effort per Fault

5.00 26.50 1 .00 10.83
12.00 8.00 8.88 9.59
6.58 7.28 8.16 7.23
4.14 7.53 7.32 5.85
4.50 5.86 6.93 5.44

T

I o.80 I OTHER 1 0.75 I 1.00 1 0.00 1
Table 4.1

Irrespective of fault sources, the average effort spent to fix a fault for all four pro-
jects is 6.14 hours. It is observed that the faults due to incorrect requirements, function
specification and design require more than average effort. Therefore, faults resulting
from these three sources are considered the most difficult to debug.

2Sources of Faults

REQUIR - Incorrect requirement specification
FUNSPE - Incorrect function specification
DESIGN - Incorrect design
CODE
PREV. C - Fault resulting from a previous change
OTHER - None of the above

'- Incorrect code (possibly semantic fault)

3Average of all four projects

- 12-
4-15

4.2 Reliability Models
Reliability models are at times expensive and difficult to apply. In the past,

attempts had been made to use the Musa model in the SEL environment [Miller 1980).
The study showed that reliability models over predicted remaining faults (under predict-
ing the reliability) of the systems to an extent to make the models impractical for this
environment. I t was argued that the model needed more accurate data on run history
than it was feasible to collect, since data waa collected in groups of time rather than
after each fault. In this study, we tried to use the Goel-Okumoto model [Goel &
Okumoto 19801. This is an NHPP model, which handles group data. Given a history of
faults observed over time, it can predict the number of faults to be observed by a par-
ticular time. The model is:

where
n(t) is the number of faults observed by time t,
a
b

predicts the maximum number of faults to be observed,
is the st.egpnes.s of the ClJrve,

There are several ways this model can be used. One way is to apply the model at
different times and observe whether there is any improvement in the estimated parame-
ters. The other way is to compare the reliability measure against past projects and use
one's own judgement based on one's knowledge about the past projects at that particu-
lar time. We will look at both approaches.

Using the first approach, the model was applied to the four projects at different
times in the test life cycle and comparisons of estimated parameters were made to
observe any improvements in reliability measurements. Data given in the appendix
were used and the parameters ("a" and "b") were estimated using the algorithm given
in [Goel 19821. The results are shown in Table 4.2 through Table 4.6.

Table 4.2 displays result for only system test data. Table 4.3 and Table 4.4 display
the results as more points were added. The parameter "a" is observed to increase and
then decrease.

- 13-
4-16

Data Used: System Test

Project a b Faults Faults Faults
Observed Predicted Observed

Before Later
~~~~ 

DEA 
DEB 
SMM 
ERBS I 378.7 I 0.010 I 181 I 197 I 112 I 

~ 

70.3 0.036 40 30 68 
291.4 0.011 132 159 73 
112.6 0.010 45 67 77 

Table 4.2 

DEA 
DEB 
SMM 
ERBS 

Data Used: System + Halj of Acceptance Test 

141.4 0.013 108 33 - 
271.2 0.010 205 66 - 
141.7 0.010 122 19 - 
375.0 0.010 293 93 - 

Data Used: 1 

Table 4.3 

System + Acceptance Test I Project. I a 1 b I Faults I Faults I Faults I 
Observed Predicted Observed 

I Before I I Later I 

Table 4.4 
As more data were added the estimated parameters look worse. When only accep- 

tance test data were used the model shows improvement of reliability parameters for all 
the projects with one exception. It predicts a large number of remaining faults for pro- 
ject 4 (ERBS). The results are shown in Table 4.5 and 4.6. 

- 14- 
4-17 



Data Used: Only Acceptance Test(partia1) 

Data Used: Acceptance Test(fuU) 
Project a b 

j E 1 tn; 1 0.027 
0.026 

SMM 104.9 0.013 
ERBS 242.0 0.011 

Table 4.5 

Before Later 

112 130 

Table 4.6 
Fault detection rate is dependent on complexity and amount of code covered by 

successive test cases. Usually, in the SEL environment, simple tests are performed ini- 
tially and followed by more complex tests. This study confirms the results by [Miller] on 
a different set of projects. Reliability models do not appear to be useful in this environ- 
ment. 

4.3 Reliability Metrics 
One of the important tasks of a software manager is to monitor the quality and 

reliability of the software being developed. Fault data for the past projects in the same 
environment help in the comparison of reliability metrics for an on-going project with 
past projects. Since different projects have different sizes and different duration of test- 
ing time, normalized reliability metrics can be compared at each quarter in each phase. 
One would expect normalized reliability metrics, such a s  fault rate (faults per day) or 
fault density (faults per day per line of code), to be constant and same during the test 
life cycle. This does not seem to be true, even in the same environment and for similar 
applications written in same language. The sizes of the four projects varies from 66K to 
160K. This may have contributed to the variations of the normalized metrics. In this 

- 15- 
4 - 1 8  



situation, using the fault data for the four representative projects, we present an accept- 
able fault density range at different intervals during the testing phases in order to facili- 
tate reliability monitoring. The following tables summarize the fault densities for the 
projects and the acceptable ranges for the fault density at each interval, where accept- 
able ranges have been calculated using nmean +/- variancen. 

Project 

DEA 

Fault Density 

Acceptance 
25% 50% 75% 100% 
2.47 2.48 2.26 2.08 

25% 
2.33 f 2012 0.85 

1 DEB I 2.89 I 2.75 I 2.56 I 2.22 I 

50% 75% 
3.09 f Za/1 1.30 2.75 f Za/2 0.81 2.28 f Za/2 0.66 

I SMM I 1.05 I 0.97 I 0.94 I 0.82 I 
I ERBS I 0.84 I 0.83 I 0.83 I 0.82 I 

Table X I  

Acceptable Ranges for Fault Density 

UNIT Test Phase 

- 16- 
4-19 



SYSTEM Test Phase 1 
25% 50% 

2-03 f Zu/10.58 
75% 

1.96 f Zufi 0.58 1-90 f 2 4 2  0.54 

ACCEPTANCE Test Phase 

25% 50% 
1.81 f Za/2 0.50 1.75 f Z a ~ 0 . 4 9  

75% 
1.64 f Zab 0.44 1.48 f 2 4 2  0.38 

Table XIII 
There are two important observations obtained from analyzing these fault densities 

for different projects. First, the fault density at the end of unit test phase is greater 
than the fault density at the end of the system test phase and the same relationship 
holds for the system test phase and acceptance test phase. Second, the fault density 

change of fault density for project ERBS during the Acceptance test phase is almost 
steady. This is different from other projects though the fault density for this project is 
lower than other projects. This is, in a way, a reflection of increase in fault rate because 
of more complex tests being performed during the second half of the acceptance test. 

It was observed that the faults due to incorrect requirements, function specification 
and design require more than average effort. We also investigated the possibility and cri- 
teria for using a reliability model in the SEL environment and it was found that the reli- 
ability models look worse and wome as more data is added. Finally, we provided a basis 
for comparison of fault distributions in order to monitor reliability of an on-going pro- 
ject. 

mem&Gre-j dur;,cg t h e  scceptacce test phwe .&=;;rs i;T,&,! &ere=& PJGtiC. that the 

5. Conclusion 
In summary, an appropriate estimation formula or a fitted curve may be used to  

predict the number of faults in the future and therefore fault correction effort also can 
be predicted. Faults in software originate from several sources; it has been found that 
the longer the fault stays in the system, the more costly it is to remove. It has been 
observed that the fault resulting from requirement specifications, function specification 
and design require more effort to fix than faults resulting from other sources. This state- 
ment is based on the data for only four projects. Comparison of fault density at 
different intervals may be made with the same metric for other past projects to assure 
the status of the project. Fault densities are observed to decrease from the unit test 
phase to the end of the acceptance test phase. Also within the acceptance test phase the 
fault densities at  an interval is lower than in the previous interval. Both horizontal 
comparison, i.e. comparing with other projects at a particular interval, and vertical 

- 17- 
4-20 



comparison, i.e. comparing within the same project at different intervals, were con- 
sidered for the application of a reliability model, but were not effective in this environ- 
ment. 

' 
I 

Acknowledgments 
The authors are grateful to Dr. b r i t  Goel of Syracuse University-, Frank McGarry 

of NASA/Goddard Space Flight Center, Dr. Gerald Page of Computer Sciences Cor- 
poration, Dr. Dieter Rombach and Nora M. Panlilio-Yap of the University of Maryland 
for their suggestions and support. Computer support was provided by NASA/Goddard 
Space Flight Center, Department of Computer Science, Computer Science Center and 
Sea Grant College at the University of Maryland. 

m 
a 

References 

I 

[41 
I 

[51 

[71 

Victor R. Basili and Barry T. Perricone, "Software Errors and Complexity: 
A n  Empirical Investigation," Computer Science, Univ. of Maryland, 1982, WOM- 
1195. 

Victor R. Basili and David M. Weiss, "Evaluating Software Development b y  
Analysis of Changes: The Data From the Software Engineering Laboratory", IEEE 
Transaction on Software Engineering, Vol. SE-11, No.12, pp 157. 

V. R. Basili, M. V. Zelkowitz, F. E. McGarry, R. W. Reiter, W. F. Truszkowski, 
and D. L. Weiss, "The Software Engineering Laboratory", Tech. Rep. TR-535, 
Department of Computer Science, University of Maryland, College Park, May 1977. 

J. S. Coutinho, "Software Reliability Growth", IEEE Symp. Comp. Software Relia- 
bility, 1973. 

C. W. Doerflinger and V. R. Basili, "Monitoring Software Development Through 
Dynamic Variables", IEEE Transaction on Software Engineering, Vol. SE-11, No. 9, 
Sept. 1985, pp. 978. 

0. E. Ellingson, "Computer Program and Change Control", IEEE Symp. Comp. 
Software Reliability, 1973. 

Kurt  F. Fisher and Michael G .  Walker, "Improved Software Reliability Through 
Requirements Verification", IEEE Transactions on Reliability, August 1979. 

- 18- 
4-21 



[8] J.E. Gaffney, Jr., "Estimating the Number of Faults in Code", IEEE Transaction on 
Software Engineering, Vol. SE-10, No.4, July 1984, pp 459464. 

[9] A. L. Goel and K. Okumoto, " A  Time Dependent Error Detection Model for 
Software Performance Assessment with Applications", annual report to RADC, 
Department of Industrial Engineering and Operations Research, Syracuse Univer- 
sity, New York, March 1980. 

[lo] A. L. Goel, "Software Reliability Modeling and Estimating Techniques", RADC- 
TR-82-263, Air Force Systems Command, Grifiss Air Force Base, NY 13441. 

[ll] M. Halstead, " Elements of Software Science", Elsevier North-Holland, Inc., New 
York, 1977. 

[12] A. Iannino, J.D. Musa, K. Okumoto and B. Littlewood, " Criteria for Software Reli- 
ability Model Comparisons", IEEE Transactions on Software Engineering, vol. SE- 
10, No.6, November 1984, pp 687-691. 

[13] Myron Lipow, " Comments on "Estimating the Number of Faults in Code" and Two 
Corrections to Published Data", IEEE Transactions on Software Engineering, Vol. 
SE-12, No. 4, April 1986, pp 584-585. 

[14] Irwin Nathan, " A  Deterministic Model to Predict Error-Free Status of Computer 
Software Development", Proc. Workshop on Quantitative Software Models, Kiame- 
sha Lake, NY, IEEE, Oct 9, 1979. , 

(151 Anna-Mary B. Miller, " A  Study of the Musa Reliability Model", Master's Thesis, 
Computer Science Dept., Univ. of Maryland, 1980. 

[16] J. D. Musa, " A  Theory of Software Reliability and Its Application", IEEE Transac- 
tions on Software Engineering, vol. SE-1, No. 3, September 1975, pp 312-327. 

[17] M. L. Shooman, "Software Engineering", Computer Science Series, McGraw Hill 
Publications, 1983. 

[18] M. L. Shooman.and M. J. Bolsky, "Types,  distributions and test and correction 
time for programming errors", ACM SIGPLAN Notices, Vol. 10, pp. 347-357, June 
1975. 

[19] M. Trachtenberg, " Order and Difliculty of Debugging", IEEE Transactions on 
Software Engineering, Vol. SE-9, No.6, November 1983, pp 746-747. 

- 18 - 
4-22 



1 

I 
I 
I 

Thomas A. Thayer, Myron Lipow & Eldred C. Nelson, "Software Reliability", TRW 
Series of Software Technology, Volume 2, 1978, North-Holland Publishing Com- 
pany. 

C.F. Walston and C.P. Felix, " A  Method of Programming Measurement and Esti- 
mation", IBM System Journal, Vol. 16, No.1, 1977, pp 54-73. 

- 2 0 -  

4-23 



Appendix 

Phase 

Unit 

System 

Acceptance 

Prc 
Quarters 
in Phase 

:ct 1 (DEA) 

Elapsed Changed 
Days Faults Components 

20 25 37 
41 76 122 
62 124 236 
83 162 296 

~ 

85 
88 
90 
91 
94 
97 
100 
103 
104 
106 
109 
112 

~~~ 

167
178
178 323
178
182
185 330
187
193
193 355
195
201
202 372

119
127
131
135
143
152
159
167
171
175
183
191

210
215
220 406
225
240
256 480
259
261
263 493
268
270
270 504

Table A.l

A - 1

4-24

x t 2 (DEB)
Days Faults Components

Elapsed Changed
Phase

Unit

System

Acceptance

Pr
Quarters
in Phase

1
2
3
4

1

2

3

4

1 2 2
3 10 10
4 12 12
6 14 22

13 31
20 32
23 37 62
27 40
34 62
41 81 117
48 99
55 112
59 119 178
62 123
69 134
77 146 213

84 157
91 165
94 174 265
98 176

105 189
112 197 302
119 204
126 209
129 211 332
133 213
140 215
147 219 342

Table A.2

A - 2

4-25

'Ct 3 (SMM)
Phase

Unit I-
System

Acceptance

P R
Quarters
in Phase

1
2
3
4

1

2

3

4

Days Faults Components
Elapsed Changed

42 45 63
84 100 149

126 127 192
168 169 243

174 176
180 180
184 185 267
187 185
193 186
200 190 274
206 193
212 196
216 198 283
219 198
225 202
232 214 319

245
258
265
27 1
285
298
311
325
331
338
351
365

224
24 1
244 366
244
248
257 387
268
275
281 426
281
285
291

Table A.3

A - 3

4-26

Phase

Unit

System

9cc ep t anc e

Pm
Quarters
in Phase

1
2
3
4

1

2

3

4

!ct 4 (ERBS)

Elapsed Changed
Days Faults Components

Table A.4

A - 4

4-27

68 0 0
136 6 8
204 120 154
272 293 383

280 310
289 342
293 343 451
297 355
306 379
314 400 547
323 407
33 1 415
335 423 578
340 440
348 458
357 475 . 667

363 491
370 502
373 507 725
377 514
383 522
390 532 773
397 544
403 555
407 562 815
410 568
417 578
424 589 855

